	
	數位化數字系統 (Digital Numbering System)

	
	數字系統是數字電路的基礎，在日常生活中我們用十進制的數字系統，而在數字電路都用二進制，在編程和人機構通中我們多用十六進制，我們會逐一討論它們的特性和用法 :
· 十進制 (decimal) , 二進制 (binary), 十六進制 (hexadecimal)
· VB.NET 不用任何標號 標號 &B 標號 &H

	[image: image1.png]

	十進制Decimal System

	
	十進制系統 decimal system 包含 10 個字符. 即是 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. 所有十進制數字都是由這十個字符組成. 人類世界就是用十進制數的，我們從小就學習，其結構如下：
103
102
101
100

10-1
10-2
10-3
=1000
=100
=10
=1
.
=0.1
=0.01
=0.001
[image: image46.png]START

v

Divide by 2

v
Record quotient
(@) and Remainder

R

No

Yes
v

Collect R's into desired
binary nurber with first R
a5 LSB and last R as
MSB

deepsiadeeps.org

v

 Most Significant Bit 小數點 Least Significant Bit
例如 1024 = (1 x 1000) + (0 x 100) + (2 x 10) + 4

	[image: image2.png]

	二進制Binary System

	
	所有電腦內部都是用二進制數字系統的, 它只有 0 或 1 兩種狀態. 0 就是低電位，關掉，開路的狀態，而1 是高電位，開機，閉合的狀態。 十進制的數字可轉成二進在電腦上運行。跟十進制原理一樣，結構如下：

23
22
21
20

2-1
2-2
2-3
=8
=4
=2
=1
.
=1/2
=1/4
=1/8
Most Significant Bit 小數點 Least Significant Bit
例如二進 1011 1100 = (1 x 128) + (0 x 64) + (1 x 32) + (1 x 16) + (1 x 8) + (1 x 4) + (0 x 2) + (0 x 1)
 = 128 + 32 + 16 + 8 + 4 = 188 (十進)

	[image: image3.png]

	十六進制Hexadecimal System

	
	

	
	十六進數字由 0 至 9 加上 A, B, C, D, E, 和 F 16 個字符組成. 二進制數用起來太長，不放便，十進和二進又相差太遠，不易連繫起來，所以人類用16進和電路溝通，因為它和二進有個特別的關係，就是每一個位的16進數可代表4個位的二進制數。結構如下：
163
162
161
160

16-1
16-2
16-3
=4096
=256
=16
=1
.
=1/16
=1/256
=1/4096
Most Significant Bit 小數點 Least Significant Bit
· 24.616 = 2 x (161) + 4 x (160) + 6 x (16-1) = 36.37510
· 11.116 = 1 x (161) + 1 x (160) + 1 x (16-1) = 17.062510
· 12.316 = 1 x (161) + 2 x (160) + 3 x (16-1) = 18.187510

	[image: image4.png]

	0 和 1 如何代表我們所用的數字

	
	 8 位元 二進數 與 十進 和 十六進 的數值表 :
27
26
25
24
23
22
21
20
Decimal
Hexadecimal
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
1
0
2
2
0
0
0
0
0
0
1
1
3
3
0
0
0
0
0
1
0
0
4
4
0
0
0
0
0
1
0
1
5
5
0
0
0
0
0
1
1
0
6
6
0
0
0
0
0
1
1
1
7
7
0
0
0
0
1
0
0
0
8
8
0
0
0
0
1
0
0
1
9
9
0
0
0
0
1
0
1
0
10
A
0
0
0
0
1
0
1
1
11
B

0
0
0
0
1
1
0
0
12
C

0
0
0
0
1
1
0
1
13
D

0
0
0
0
1
1
1
0
14
E

0
0
0
0
1
1
1
1
15
F

0
0
0
1

0
0
0
0
：

：

：

：

1

1

1

1

1

1

1

1

255

FF

VB.NET 中開關個別位元常用到 AND, OR 和 XOR 的運算
 一位元的AND 邏輯 一位元的 OR 邏輯 一位元的 XOR 邏輯

 A B (A Xor B)
 (A and B) A B (A or B)

 0 0 0 0 0 0 0 0 0
 0 1 0 0 1 1 0 1 1
 1 0 0 1 0 1 1 0 1
 1 1 1 1 1 1 1 1 0
 AND邏輯運算 可以用來 OFF 一個位元組的其中一個或多個位元，

 例如 把資料類別Byte變數 BData 的第三位位元(23) OFF，我們會寫成
 BData = BData AND &B 1111 0111 或 BData = BData AND &H F 7
 OR邏輯運算 可以用來 ON 一個位元組的其中一個或多個位元，

 例如 把資料類別Byte變數 BData 的第三位位元(23) ON，我們會寫成
 BData = BData OR &B 0000 1000 或 BData = BData OR &H 8

 XOR邏輯運算 可以用來 反轉 一個位元組的其中一個或多個位元，

 例如 把資料類別Byte變數 BData 的第三位位元(23) 反轉，我們會寫成

 BData = BData XOR &B 1111 0111 或 BData = BData XOR &H F 7

	[image: image5.png]

	Code Conversion

	
	

	
	Converting from one code form to another code form is called as code conversion. Like converting from Binary to decimal or converting from hexadecimal to decimal.

	
	

	[image: image6.png]

	Binary-To-Decimal Conversion

	
	

	
	Any binary number can be converted to its decimal equivalent simply by summing together the weights of the various positions in the binary number which contain a 1.
1 1 0 1 1 2
(binary)
24+23+0+21+20
= 16+8+0+2+1
Result
= 2710 (decimal)
and
1 0 1 1 0 1 0 1 2
(binary)
27+0+25+24+0+22+0+20
= 128+0+32+16+0+4+0+1
Result
= 18110 (decimal)
You should noticed the method is find the weights (i.e., powers of 2) for each bit position that contains a 1, and then to add them up.

	
	[image: image7.png]

	[image: image8.png]

	Decimal-To-Binary Conversion

	
	There are 2 methods:

	
	

	[image: image9.png]

	Reverse of Binary-To-Decimal Method

	
	45 10
= 32 + 0 + 8 + 4 +0 + 1

= 25+0+23+22+0+20
Result
= 1 0 1 1 0 12

	
	

	[image: image10.png]

	Repeat Division

	
	This method uses repeated division by 2.
Convert 2510 to binary
25/2
= 12+ remainder of 1
1 (Least Significant Bit)
12/2
= 6 + remainder of 0
0
6/2
= 3 + remainder of 0
0
3/2
= 1 + remainder of 1
1
1/2
= 0 + remainder of 1
1 (Most Significant Bit)
Result
2510 =
110012
The Flow chart for repeated-division method is as shown :

	
	[image: image11.png]

	
	

	
	

	[image: image12.png]

	Binary-To-Octal / Octal-To-Binary Conversion

	
	Octal Digit
0
1
2
3
4
5
6
7
Binary Equivalent
000
001
010
011
100
101
110
111
Each Octal digit is represented by three bits of binary digit.
Example:
 100 111 0102 = (100) (111) (010)2 = 4 7 28

	
	

	[image: image13.png]

	Repeat Division

	
	This method uses repeated division by 8.
Example :
convert 17710 to octal and binary:

	
	177/8
= 22+ remainder of 1
1 (Least Significant Bit)
22/ 8
= 2 + remainder of 6
6
2 / 8
= 0 + remainder of 2
2 (Most Significant Bit)
Result
17710 =
2618
Convert to binary
= 0101100012

	
	

	[image: image14.png]

	Hexadecimal to Decimal/Decimal to Hexadecimal Conversion

	
	Example:
 2AF16 = 2 x (162) + 10 x (161) + 15 x (160) = 68710

	
	

	[image: image15.png]

	Repeat Division: Convert decimal to hexadecimal

	
	This method uses repeated division by 16.
Example :
convert 37810 to hexadecimal and binary:
378/16
= 23+ remainder of 10
A (Least Significant Bit)23
23/16
= 1 + remainder of 7
7
1/16
= 0 + remainder of 1
1 (Most Significant Bit)
Result
37810 =
17A8
Convert to binary
=0001 0111 10102

	
	

	[image: image16.png]

	Binary-To-Hexadecimal /Hexadecimal-To-Binary Conversion

	
	

	
	Hexadecimal Digit
0
1
2
3
4
5
6
7
Binary Equivalent
0000
0001
0010
0011
0100
0101
0110
0111

Hexadecimal Digit
8
9
A
B
C
D
E
F
Binary Equivalent
1000
1001
1010
1011
1100
1101
1110
1111
Each Hexadecimal digit is represented by four bits of binary digit.
Example:
 1011 0010 11112 = (1011) (0010) (1111)2 = B 2 F16

	
	

	[image: image17.png]

	Octal-To-Hexadecimal Hexadecimal-To-Octal Conversion

	
	

	
	· 1) Convert Octal (Hexadecimal) to Binary first.
· 2) Regroup the binary number in 3 bits a group starts from the LSB if Octal is required.
· 3) Regroup the binary number in 4 bits a group from the LSB if Hexadecimal is required.
Example:
Convert 5A816 to Octal.
5A816
= 0101 1010 1000 (Binary)

= 010 110 101 000 (Binary)
Result

= 2 6 5 0 (Octal)

	[image: image18.png]

	Binary Codes

	
	

	[image: image19.png]

	Weighted Binary Systems

	
	Weighted binary codes are those which obey the positional weighting principles, each position of the number represents a specific weight. The binary counting sequence is an example.
Decimal
8421
2421
5211
Excess-3
0
0000
0000
0000
0011
1
0001
0001
0001
0100
2
0010
0010
0011
0101
3
0011
0011
0101
0110
4
0100
0100
0111
0111
5
0101
1011
1000
1000
6
0110
1100
1010
1001
7
0111
1101
1100
1010
8
1000
1110
1110
1011
9
1001
1111
1111
1100

	
	

	[image: image20.png]

	8421 Code/BCD Code

	
	The BCD (Binary Coded Decimal) is a straight assignment of the binary equivalent. It is possible to assign weights to the binary bits according to their positions. The weights in the BCD cod are 8,4,2,1.
Example : The bit assignment 1001, can be interpreted by the weights to represent the decimal digital 9 because.
1x8+0x4+0x2+1x1 = 9

	
	

	[image: image21.png]

	2421 Code

	
	This is a weighted code, its weight are 2, 4, 2 and 1. A decimal number is represented in 4-bit form and total weight of the four bits = 2 + 4 + 2 + 1 = 9. Hence the 2421 code represents decimal number 0 to 9.

	
	

	[image: image22.png]

	5211 Code

	
	This is a weighted code, its weight are 5, 2, 1 and 1. A decimal number is represented in 4-bit form and total weight of the four bits = 5 + 2 + 1 + 1 = 9. Hence the 5211 code represents decimal number 0 to 9.

	
	

	[image: image23.png]

	Reflective Code

	
	A code is said to be reflective when code for 9 is complement for the code for 0, 8 for 1, 7 for 2, 6 for 3 and 5 for 4. Codes 2421, 5211, and excess-3 codes are reflective, whereas the 8421 code is not. The reflected code is also known as gray code ??.

	
	

	[image: image24.png]

	Sequential Codes

	
	A code is said to be sequential when each succeeding code is one binary number greater than its preceding code. This greatly aids mathematical manipulation of data. The 8421 and Excess-3 codes are sequential, whereas the 2421 and 5211 codes are not.

	
	

	[image: image25.png]

	Non Weighted Codes

	
	No weighted codes are codes that are not positional weighted. That us, each position within the binary number is not assigned a fixed value.

	
	

	[image: image26.png]

	Excess-3 Code

	
	Excess-3 is a non weighted code used to express decimal numbers. The code derives its name from the fact that each binary code is the corresponding 8421 code plus 0011(3).

Example : 1000 of 8421 = 1011 in Excess-3

	
	

	[image: image27.png]

	Gray Code

	
	The gray code belongs to a class of codes called minimum change codes, in which only one bit in the code changes when moving from one step to next step. The Gray code is non-weighted code, as the position of bit does not contain any weight. In digital Gray code has got special place.

	
	

	[image: image28.png]

	Error Detecting and Correction Codes

	
	

	[image: image29.png]

	Error Detecting Codes

	
	When data is transmitted from one point to another, or it is just stored like in Hard disk, Memories, wire less transmission. There are chances that data may get corrupted. To detect this data errors, we use special codes, this codes are error detection code.

	
	

	[image: image30.png]

	Parity

	
	In parity codes, every data byte, or nibble (based on how user want to use it) is checked if they have even number of ones or even number of zeros. Based on this information additional bit is appended to original data. Thus if we consider 8-bit data, then adding parity bit will make it 9 bit.

In receiver side, once again parity is calculated and matched with the received parity (bit 9), and if they match, data is ok ,else data is corrupt.

There are two types of parity

· Even parity : Checks if there are even number of ones, if yes then parity bit is zero. When number of one's is odd then parity bit is set to 1.

· Odd Parity : Checks if there are odd number of ones, if yes then parity bit is zero. When number of one's is even then parity bit is set to 1.

	
	

	[image: image31.png]

	Check Sums

	
	The parity method is calculated over byte, word or double word. But when error need to be checked over 128 bytes or more (basically block of data). Then calculating parity is not the right way. (need to add more)

	
	

	[image: image32.png]

	Error-Correcting Codes

	
	Error correcting codes, just not only detect errors, but also correct the errors. This is used normally in Satellite communication, where turn-around delay is very high and there is also high-probability of data getting corrupt.

Other places where ECC (Error correcting codes) used are in memories, networking etc.

	
	

	[image: image33.png]

	Hamming Code

	
	Need to add

	
	

	[image: image34.png]

	Alphanumeric Codes

	
	The binary codes that can be used to represent all the letters of alphabet, numbers and mathematical symbols, punctuation marks are known as alphanumeric codes or character codes. These codes enables us to interface the input-output devices like the keyboard, printers, video displays with the computer.

	
	

	[image: image35.png]

	ASCII Code

	
	ASCII stands for American Standard Code for Information Interchange. It has become a world standard alphanumeric code for microcomputers and computers. It is a 7-bit code representing 27 = 128 different characters. These characters represent 26 upper case letters (A to Z), 26 lowercase letters (a to z), 10 numbers (0 to 9), 33 special characters and symbols and 33 control characters.

The 7-bit code is divided into two portions, The left most 3 bits portion is called zone bits and the 4-bit portion on the right is called the numeric bits.

An 8-bit version of ASCII code know as USACC-II 8 or ASCII-8. The 8-bit version can represent a maximum of 256 characters.

	
	

	[image: image36.png]

	EBCDIC Code

	
	EBCDIC stands for Extended Binary Coded Decimal Interchange. It is mainly used with large computer systems like main frames. EBCDIC is an 8-bit code and thus accommodate up to 256 characters. An EBCDIC code is divided into two portions : 4 zone bits (on the left) and 4 numeric bits (on the right).

	
	

	[image: image37.png]

	Hollerith Code

	
	Need to add

	
	

	[image: image38.png]

	Teletypewriter Code

	
	Need to add

	
	

	[image: image39.png]

	Other Codes

	
	Need to add

	
	

	[image: image40.png]

	Unicode

	
	Need to add

	[image: image41.png]

	 浮點數字Floating Point Numbers

	
	A real number or floating point number is a number which has both an integer and fractional part. Examples for real real decimal numbers are 123.45, 0.1234, -0.12345, etc. Examples for a real binary numbers are 1100.1100, 0.1001, -1.001, etc. In general, floating point numbers are expressed in exponential notation.

For example the decimal number 30000.0 can be written as 3 x 104 , 312.45 can be written as 3.1245 x 102.

Similarly, the binary number 1010.001 can be written as 1.010001 x 103.

The general form of a number N can b expressed as

N = ± m x b±e
Where m is mantissa, b is the base of number system and e is the exponent. A floating point number is represented by two parts. The first part, called mantissa, of the number is a signed fixed point number and the second part, called exponent, specifies the decimal or binary position.

	
	

	[image: image42.png]

	Binary Representation of Floating Point Numbers

	
	A floating point binary number is also represented as in the case of decimal numbers. That's means the mantissa and exponent are expressed using signed magnitude notation in which one bit is reserved for sign bit.
Consider a 16-bit word is used to store the floating point numbers, Assume that the 9 bits are reserved for mantissa and 7-bits for exponent and also assume that the mantissa part is represented in fraction system. That implies, the assumed binary point is immediate right of sign bit of mantissa.

	
	

	
	[image: image43.png]Sign bit TAssumed binary point iS\gn bit

fe—— 9 bits Mantissa ——»{7 bits Exponents—»

	
	

	[image: image44.png]

	Example

	
	A binary number 1101.01 is represented as
Mantissa = 110101
(1101.01)2 = 0.110101 X 24
Exponent = (4)10

Expand mantissa to 8 bits we get , 11010100
Binary representation of exponent (4)10 = 000100
The required representation is

	
	

	
	[image: image45.png]ign bit Assumed binary point Sign bit
T1o«o1uu£ooo«on

deeps@deeps.org

}e—— 9 bits Mantissa ——»{7 bits Exponents—»

� INCLUDEPICTURE "http://www.deeps.org/images/digital/number1.gif" * MERGEFORMATINET ���

A

B

A B

